

Digital Emissions

4% Digital world contribution to global GHG emissions

Annual Growth Rate

Growing at the **fastest rate** compared to any other sector

Emission Reduction

45% Reduction on GHG emissions by 2030 to align with the Paris Agreement

Why does cyber matter for sustainability?

Cyber teams must play their part in sustainable development, going beyond Green IT, by questioning the way they implement cyber in order to reduce its impact without compromising on the risk level.

Cyber represents a significant proportion of information systems (+/-5% of the IT budget*) and is growing rapidly to face new threats.

Cybersecurity controls have a major impact on the way information systems are designed and operated, hence their strategic importance for overall carbon footprint.

Wavestone, as part of the Cyber4Tomorrow initiative, developed a methodology to measure the impact of cyber and identify actions that need to be taken to reduce carbon emissions with no compromise to risk.

This study is an **exploratory methodological framework**, unique in its approach, which aims to be **adopted** by the stakeholders and **enhanced** in the years to come.

Methodology: focusing on GHG emissions

To assess the impact of cybersecurity, we focused first on **greenhouse gases emissions (in CO₂eq)** which are the consequences of a security control.

Study Scope

In scope:

- PCs, servers and appliances: manufacturing and utilization
- Data centers support infrastructure utilization
- External services, including a share of the Cloud
- Business travel: train and plane

Servers and workstations location have been taken into account with a location-based approach.

Out of scope:

- Data centers: construction
- Network infrastructure and offices: construction and utilization
- Cybersecurity teams commuting & business travel by car

Sources

For cybersecurity values:

- Wavestone information system data
- Wavestone client information system data

For emissions factors:

- ADEME* Base Empreinte
- Boavizta
- Dedicated hardware manufacturers data
- Carbon Disclosure Project's Cloud data
- Wavestone studies data

The list of emission factors is in the appendix.

*ADEME: French Agency for Ecological Transition

Ovber Sustainability - 202

Starting from 700 security controls of NIST Cybersecurity framework international standards, we identified the 50 most emitting controls

The **50** most emitting controls were selected if the answer was positive to one or more of the following questions (based on the ADEME/Arcep* breakdown of the carbon footprint of the digital world):

- I. Does it require a significant number of **endpoints**?
- 2. Does it require a significant number of **servers** and computing power?
- 3. Does it require a large amount of **network equipment** and **bandwidth**?

Based on these 50 shortlisted security controls, we identified the TOP 10 most emitting controls

Security controls (based on the NIST framework)

Qualitative filtering

Shortlisted controls

Quantitative filtering

Most CO₂emitting controls

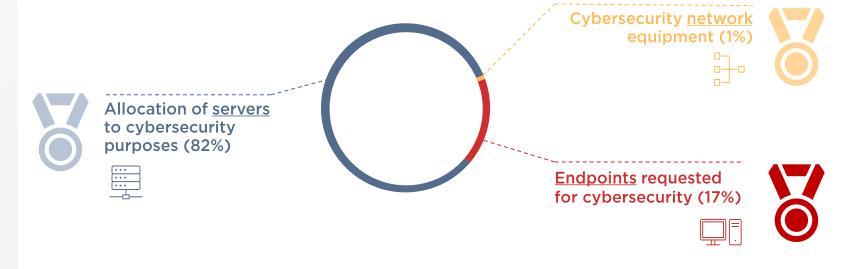
Brainstorming & impact calculation

Among the 50 shortlisted controls, the **TOP 10 most emitting controls** was selected based on the calculation of the emissions using:

- Real-life data from Wavestone and its clients' figures (including data centers locations)
- Emission factors using benchmarked values of IT asset emissions*

- → These results have to be calculated for each company
 - → These initial results enable us to identify the first paths of action

Syber Sustainability - 202


How much do the emissions of the 50 shortlisted security controls represent against IT emissions?

The **greenhouse gases emissions** of the **50 shortlisted security controls** were calculated to estimate the overall impact of cybersecurity.

From

1/3 to 2/3

of IT emissions are linked to cyber requirements

Cybersecurity greenhouse gases emissions resulting from the 50 shortlisted security controls as measured in our organizations As this is a view by technical asset, it excludes consulting and travel.

What did we learn? Debunking cybersecurity emissions' myths

2 security topics generate 50% of cybersecurityrelated emissions...

Data (5%) Data in motion and

data at rest protection Cryptography

Vulnerability (9%)

Vulnerability scans Pentests Antiviruses Patch management

IAM (10%)

Cyber Sustainability

Authentication Vaults PAM

Detect (11%)

Log generation Log collection and storage Log analysis

Network (5%)

Network mapping and segmentation Anti DDoS

Governance (3%)

Cyber staff workstations Cybersecurity awareness Travel

Other topics (8%)

Incident management, risk, etc.

Resilience (36%)

Redundancy capabilities in different regions Backup servers Backup PCs

Emissions % by NIST topic

Contractor workstations

Administrator workstations

Endpoints (13%)

and VDIs

...but not the one we thought

It emits more than we may think

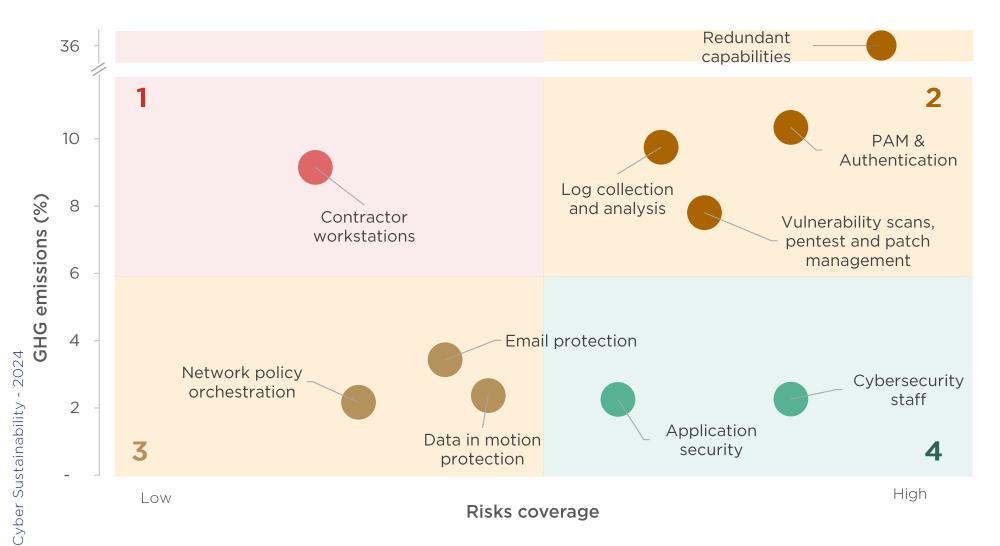
Resilience capabilities

36% of cybersecurity emissions

Contractor workstations

9% of cybersecurity emissions

It emits less than we may think


Cyber threat intelligence

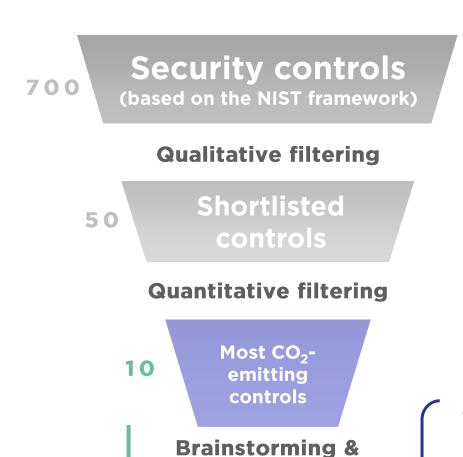
<2% of cybersecurity emissions

Encryption

<1% of cybersecurity emissions

We mapped the 10 most emitting controls according to their risk coverage in our context to assess their level of priority

Medium risk coverage, high CO2 impact


High risk coverage, high CO2 impact

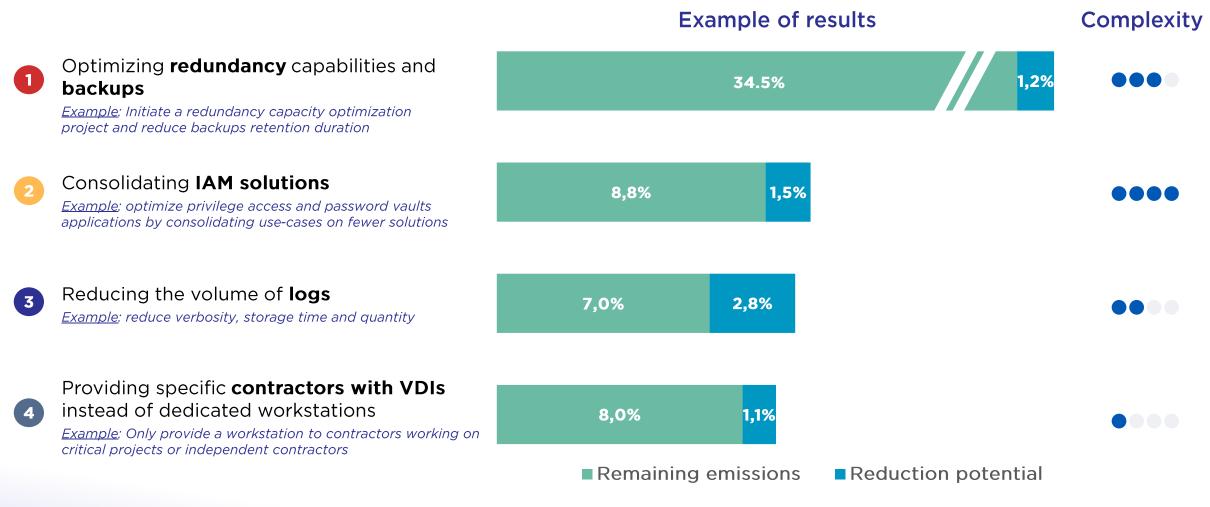
Medium risk coverage, low CO2 impact

4
High risk coverage, low CO2 impact

Cyber Sustainability

We identified the TOP 4 actions to optimize the most emitting security controls

impact calculation


Actions to be

implemented

To find actions to be implemented:

- Brainstorming workshops have been organized with Wavestone experts to list ideas
- Actions have been identified to **reduce emissions** while keeping the same risk level

Optimizing security controls to decrease emissions by 5% to 10%, with a constant level of risk

As a % of total initial cyber emissions

vber Sustainability - 202

Decreasing cyber emissions comes with significant co-benefits

Beyond contributing to mitigating climate change, decreasing the carbon footprint of cybersecurity comes with many co-benefits

Reducing operational costs by optimizing the IT infrastructure (duplicated servers, cyber servers, workstations, etc.)

Comply with and anticipate legal requirements
(including SDS in the UK and CSRD in the EU)

Be at the forefront of innovation in cybersecurity and attract talents

Assess your existing controls emissions

Evaluate the CO₂ impact of existing cyber requirements using this methodology

Estimate the emissions of the security controls that are already implemented to take effective actions to reduce them

How to do it?

Run a quick assessment with the in-house <u>Excel</u> <u>questionnaire</u> (duration: 1 hour)

Run an in-depth assessment with interviews to have precise estimates (duration: 25 to 45 days)

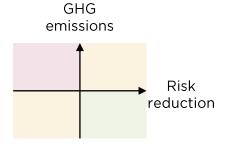
Implement green IT measures that have no risk impact

Optimize the **number of devices**

Ensure **software** is adapted requirements and use **applications** to their **full capability**

Ensure data generation is adapted to requirements

Raise awareness among staff on sustainability topics



Adopt a responsible purchasing policy

Make sure sustainability is incorporated in run activities

Implement sustainability criteria in day-to-day risk analysis

Update the risk analysis method to take greenhouse gases emissions into account

How to do it?

If a mitigation control matches one of these 2 questions, then it's significant and you need to estimate the impact more precisely using ADEME's emission factor:

- 1. Is it in one of the **TOP 10 most emitting security** controls?
- 2. Does it require a significant number of **endpoints**, or **servers and computing power**, or **network equipment** and **bandwidth**?

Continuously monitor cybersecurity greenhouse gases emissions

Complete the run security dashboard with greenhouse gases emissions indicator

How to do it?

Steer and monitor greenhouse gases emissions to continuously reduce the environmental impact, either by doing:

- 1. Continuous assessment with Green IT support: set up indicators on greenhouse gases emissions on the cybersecurity dashboard
- 2. Spot assessment every 2 years

Invite the cyber ecosystem to contribute to the transition

Further actions to reduce the impact of cybersecurity require the involvement of other stakeholders of the cyber ecosystem. Inviting them to contribute to the transition can unlock significant emission reduction opportunities.

Normalization organizations

NIST, ISO, etc.

Incorporating sustainability in the cyber norms and standards

Regulators

ECB, National Cyber Agencies, etc.

Assessing the impact of each cybersecurity requirement to promote the least carbon-intensive regulation options

Software & equipment providers

of solutions and equipment provided, ensuring a sustainable-by-design approach, for example by avoiding planned obsolescence providing offers adapted to smaller needs

Academic research

Incentivising
academic research
to measure the
efficiency of
existing protocols
(encryption,
authentication,
etc.) and
developing new
sustainable cyber
solutions

A long journey for cybersecurity to play its part

INFLUENCE AT SCALE

Cyber ecosystem actions

Reach out to us to work on this topic

to have tailored results and contribute to enhancing the methodology

(+33) 6 26 44 08 36 marcos.lopes@wavestone.com

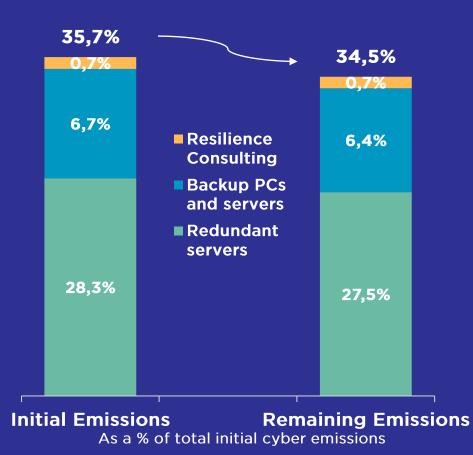
(+33) 7 60 37 76 98 marine.chabran@wavestone.com

Actions to reduce emissions: Redundancy & backups

Original security control:

Redundancy capabilities between data centers in different regions and backups are set up.

Example of actions to reduce emissions:


- Initiate a redundancy capacity optimization **project**: do not duplicate everything, review applications confidentiality, ensure that applications decommissioning is done properly
- **Optimize backups**: reduce retention duration, minimize the number of backups, optimize storage methods
- Reduce the number of backup workstations

Every organization should pick the most relevant actions depending on its context

Example

Reduction potential with the following actions:

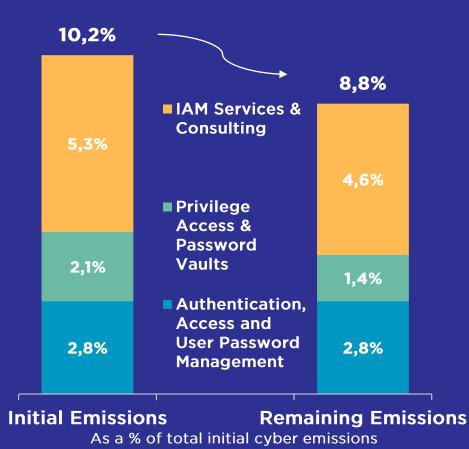
- Reduce redundant data by 3%
- Decrease backups PCs and backup servers by 5%

Actions to reduce emissions: Identity and access management

Original security control:

The organization has an identity lifecycle management solution and an authentication tool to control the identities of the users of the information system.

Example of actions to reduce emissions:


- Rationalize technologies and authentication methods
- Implement authentication methods that do not require dedicated physical equipment
- Optimize privilege access and password vaults applications: consolidate use-cases on fewer solutions to optimize infrastructure and avoid duplication in multiple geographical areas

Every organization should pick the most relevant actions depending on its context

Reduction potential with the following action:

Example

Optimize Privilege Access & Password Vaults and related Services and Consulting by 33%

Actions to reduce emissions: Log management

Original security control:

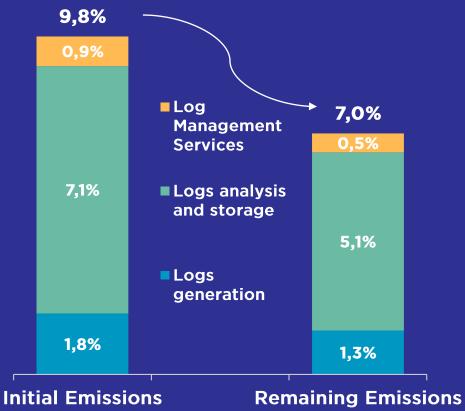
Logs are collected, centralized in a SIEM and analyzed to detect security events.

Example of actions to reduce emissions:

- Optimize the volume of logs collected and stored: reduce verbosity, storage time and quantity
- **Use an MSSP** (Managed Security Service Provider) to used shared resources with other companies

77

Wavestone Testimony


By reducing the verbosity of the logs and avoiding unnecessary logs duplication in different locations, we have been able to reduce the volume of logs collected and stored by 56%.

Every organization should pick the most relevant actions depending on its context

Example **Reduction potential with** the following actions:

- Reduce the volume of logs collected and stored by 20%
- Use an MSSP to optimize by 10%

As a % of total initial cyber emissions

Actions to reduce emissions: Contractor workstations

Original security control:

Every contractor must be provided with a dedicated workstation.

Example of actions to reduce emissions:

- Provide as many contractors as possible with a VDI, rather than a dedicated workstation
- Only provide contractors working on critical projects or independent contractors with a workstation

Every organization should pick the most relevant actions depending on its context

Example **Reduction potential with** the following action: Provide a VDI to 40% of the contractors, rather than a dedicated workstation 9,1% 8,0% 1,9% **■ VDIs** 8,3% **■** PCs Manufacturing ■ PCs Usage 5,6% 0,8% 0,5% **Initial Emissions Remaining Emissions** As a % of total initial cyber emissions

Glossary

Term	Definition
Emission Factor	An emission factor is a coefficient which allows to convert activity data into greenhouse gases emissions.
CO2eq	CO2eq is a metric measure used to estimate the emissions from various greenhouse gases converted in carbon dioxide equivalents based on their global warming potential.
ADEME (Base Empreinte)	ADEME is the French Environment and Energy Management Agency which consolidates emission factors in a database known as the Base Empreinte.

Methodology: Overarching Assumptions

Category	Assumption	
Devices	For each cyber staff, the assumption is that they have one mobile device.	
Cyber solutions	As an assumption, 6 virtual CPUs on average rely on 1 physical CPU.	
Appliances	Due to a lack of information available for proxies, reverse-proxies, web application firewalls, IPS and IDS, it was assumed that the manufacturing emissions and electricity consumption was the same as for a firewall.	
Devices	 Workstations, even when they are not used for cybersecurity purposes, still need to generate logs and run antiviruses. Therefore, for a workstations that are not purely used for cybersecurity purposes, an assumption was taken that: 0.25% of these workstations are dedicated to log generation. 0.75% of these workstations are dedicated to antiviruses. These are Wavestone internal estimates. 	
Other servers	Servers, even when they are not used for cybersecurity purposes, still need to generate logs and run antiviruses. Therefore, for all servers that are not purely used for cybersecurity purposes, an assumption was taken that: • 0.75% of these servers are dedicated to log generation. • 2.25% of these servers are dedicated to antiviruses. These are Wavestone internal estimates.	

yber Sustainability - 2024

Methodology: Emission Factor Values

Category	Name	Source	Emission Factor	Unit
Electricity mix	All Carbon Intensity of the Electricity Mix per Geographical area (kgCO2eq/kWh) are taken from the ADEME Base Empreinte	ADEME Base Empreinte	N/A	N/A
Devices	Laptop Manufacturing Emissions - All Sizes	Boavizta 2022, Statistical Study	232	kgCO2eq
Devices	Laptop Energy Consumption - All Sizes	Boavizta 2022, Statistical Study	20	kWh/year
Devices	VDI manufacturing emissions linked to the underlying server and network	Wavestone calculation based on ADEME data	128	kgCO2eq
Devices	VDI annual electricity consumption linked to the underlying server and network	Wavestone calculation based on ADEME data	26.9	kWh/year
Devices	Lifespan of a VDI underlying server	ADEME Base Empreinte	5	years
Devices	Workstations hard drive manufacturing emission	Extrapolated from a Cornell University Study	4.74	kgCO2eq
Devices	Annual electricity consumption of a monitor	Manufacturer data	44.5	kWh/year
Devices	Manufacturing emissions of a monitor	Manufacturer data	430.7	kgCO2eq
Devices	Average lifetime of a hard drive	ADEME Base Empreinte	5	years
Devices	Smartphone manufacturing emissions	Manufacturer data	50.16	kgCO2eq
Devices	Smartphones electricity consumption	ARCEP Study 2022	2	kWh/year
Servers	Rack manufacturing emissions	ADEME Base Empreinte	550	kgCO2eq
Servers	Average manufacturing emissions for cyber servers	Internal study based on constructor data of known cybersecurity servers	1269	kgCO2eq
Servers	Average electricity consumption of cyber servers	Internal study based on constructor data of known cybersecurity servers	1556	kWh/year
Servers	Average manufacturing emissions of backup servers	Internal study based on constructor data of known cybersecurity servers	2073	kgCO2eq
Servers	Average electricity consumption of backup servers	Internal study based on constructor data of known cybersecurity servers	2013	kWh/year
Cloud	Average emissions of Cloud services	2021 CDP Report	75	kgCO2eq/k€
Consulting	Average emissions of digital consulting for Fixed Fee	Internal study	35.49	kgCO2eq/k€
Consulting	Average emissions of digital consulting for Time and Material	Internal study	4904.37	kgCO2eq/FTE
Appliances	Emissions linked to manufacturing of a firewall	Extrapolated from ADEME Base Empreinte	59	kgCO2eq
Appliances	Yearly electricity consumption of a firewall	Extrapolated from ADEME Base Empreinte	90	kWh/year
Travel	Average emissions from air travel	ADEME Base Empreinte	0.187	kgCO2eq/km
Travel	Average emissions from rail travel	ADEME Base Empreinte	0.0033	kgCO2eq/km

Methodology: Emission Factor Details

Category	Name	Assumption Explanation
Servers	Manufacturing emissions for a rack	To calculate the yearly manufacturing emissions for a rack, the assumption taken for the lifespan of a rack is that it is the same as a server.
Servers	Average manufacturing emissions and electricity consumption of servers	The emission factor used for redundant servers is the average of the emission factor taken from the constructor data of known and existing cybersecurity servers.
Servers	Estimated number of racks by number of servers	To estimate the number of racks, an internal assumption was used that a rack can host 18 servers on average.
Consulting	Average emissions of digital consulting for Fixed Fee and for Time & Material	To calculate the average emissions of digital consulting, two different factors were used depending on the type of project. For Fixed Price engagements, the emission factor per k€ was used. For Time & Material engagements, the emission factor per FTE was used. Furthermore, the weighted average of emission factors of strategy vs IT & management external services was incorporated in the calculation, based on the emissions of strategy vs IT & management external services.
Appliances	Emissions linked to manufacturing of a firewall	The share of total manufacturing emissions compared to the share of total usage emissions from servers was extrapolated and applied to firewalls. The calculation employed ADEME's emission factor which states that firewalls emit on average 80.7 kgCO2e through their lifetime.
Travel	_	To calculate the average emissions linked to travel, the assumption was taken that a cyber FTE travels as much as an IT FTE.