
D E V O P S
T H E S E C R E T O F AG I L E S TA R T- U P S — N O W W I T H I N T H E
R E AC H O F L A R G E O R G A N I Z AT I O N S

2

www.wavestone.com

Wavestone is a consulting firm, created from the merger of Solucom and Kurt Salmon’s European
Business (excluding retails and consumer goods outside of France). The firm is counted amongst the
lead players in European independent consulting.

Wavestone’s mission is to enlighten and guide their clients in their most critical decisions, drawing on
functional, sectoral and technological expertise.

2 3

EDITORIAL

D E VO P S : TO WA R D E N D -TO - E N D AG I L E

In an age of digital disruption, companies
are seeking all possible ways to increase
Agility and improve the time-to-market of
their products.

And when it comes to getting there, there’s
a key word: Agile!

But you can’t legislate for Agile. It involves
a transformation on every level, from ways
of working, through organizational design
and decision-making processes, to the very
architecture of information systems.

While companies are starting to employ
Agile methods in the design and
development of products, they still come
up against an unsurmountable wall that
separates “Dev” and “Ops.”

This wall was created gradually through the
construction of information systems that
became increasingly heavy, monolithic, and
strongly interwoven with each other. To this
have been added organizational silos that
keep development and production teams
apart.

To change, and move toward DevOps at
large scale, we must take our inspiration
from the practices of the GAFA (Google,

Apple, Facebook, and Amazon) companies.
These web giants have been lucky enough
to be able to build their ISs in green-field
mode, thinking modularity and Agile from
the start.

What they teach us is that DevOps is, on the
one hand, a subtle blend of modularity and
major autonomy, and, on the other, strict
rules and operating frameworks in order to
ensure that the entire system fits together.

This publication presents the principles
of DevOps implementation, and our
recommendations for how best to embark
on this profound transformation, something
that all ISDs must pursue.

I hope you enjoy reading it!

LAURENT BELLEFIN
Assoc iate Di rector

4

Maximilien Moulin
Maximilien is a manager in Wavestone’s IT &
Data Architecture Practice, who specializes in
Cloud and Agility projects. A graduate of INSA
Lyon engineering school, he began his career
working on internal IS architecture at Orange.
After a period as an entrepreneur, he joined
Wavestone where he has spent four years advi-
sing the company’s key accounts on their Cloud
and Agility strategies.

maximilien.moulin@wavestone.com

Hasmik Manouchian
Hasmik is a manager in Wavestone’s IT &
Data Architecture Practice. She specializes
in technical architecture, agility, and
governance. She joined Wavestone 6
years ago, after graduating from IAE
Lyon 3 engineering school. She assists the
company’s clients on their transformation
projects.

hasmik.manouchian@wavestone.com

AUTHORS

Pascal Bour
Pascal Bour is a manager who specializes in
technical architecture and the industrialization
of production. A graduate of ENSEIRB, he has
been supporting Wavestone’s clients for some
eight years in the design phases of strategic
projects, as well as helping them secure and
optimize their operations.

pascal.bour@wavestone.com

T h i s p u b l i c a t i o n w a s w r i t t e n i n c o l l a b o r a t i o n w i t h M a t t h i e u B a r r e t , F r a n c k L e n o r m a n d
e t R i y a d Ya k i n e .

4 5

SUMMARY

P I L L A R I I I : T h e I n f r a s t r u c t u r e a s C o d e , a n i n f r a s t r u c t u r e
d r i ve n b y t h e a p p l i c a t i o n c o d e3 1

I m p r ov i n g t i m e - t o - v a l u e b y b r i n g i n g t h e O p s a n d D e v s
c l o s e r t o g e t h e r0 8

M O B I L I Z E YO U R C H A M P I O N S TO B E G I N T H E T R A N S I T I O N
TO D E V O P S4 0
TO W A R D A N E W O P E R AT I O N A L M O D E L F O R T H E I S D 	4 7
CO N C L U S I O N5 1

D E V O P S : A g i l e f r o m e n d - t o - e n d0 6

P I L L A R I V : B r e a k i n g d o w n s i l o s , a n d d e ve l o p i n g A g i l e a n d
c o l l a b o r a t i ve w o r k p r o c e s s e s3 6

P I L L A R I I : C o n t i n i o u s d e l i ve r y f o r a u t o m a g i c d e l i ve r i e s2 5

P I L L A R I : M o d u l a r, l o o s e l y - c o u p l e d a p p l i c a t i o n s1 7

6

The rapid and reliable provision of relevant IT services has become an essential element
of business competitiveness, whatever the sector of activity.

To increase responsiveness, without sacrificing reliability and quality, large organizations
must transform their practices, in depth, throughout the IT production cycle: from
design to deployment.

This transformation is already well under way through the democratization of Agile
methodologies, such as Scrum, which have accelerated and increased the number
of application deliveries. However, encumbered by the long delivery times for IT
infrastructure, these methods are still not able to fulfill their potential. To truly improve
time-to-value, that is, the time between the business expressing a need and the launch
of an appropriate service, the entire IT value chain, from the business functions to
operations, must be transformed.

T h e D e v O p s a p p ro a c h e x t e n d s A g i l e p r a c t i c e s f ro m d e ve l o p m e n t i n t o p ro d u c t i o n , t o

t a k e f u l l a d v a n t a g e o f t h i s a c c e l e r a t i o n i n a p p l i c a t i o n d e l i ve r i e s .

DEVOPS
AGILE FROM END-TO-END

6 7

8

D ev O p s i s a n a p p ro a c h t h a t a l i g n s s t a ke h o l d e r s i n t h e I T va l u e c h a i n (b u s i n e s s

f u n c t i o n s , d e v e l o p m e n t , a n d o p e r a t i o n s , b u t a l s o s e c u r i t y, a r c h i t e c t u r e ,

c o m p l i a n c e , a n d o t h e r c r o s s - f u n c t i o n a l d e p a r t m e n t s) t o w a r d a c o m m o n

b u s i n e s s o b j e c t i v e , w i t h t h e a i m o f i n c r e a s i n g t h e r e s p o n s i v e n e s s o f t h e

c o m p a n y w i t h i n i t s m a r ke t .

IMPROVING T IME-TO-VALUE
BY BRINGING THE OPS AND DEVS CLOSER TOGETHER

8 9

This approach is embodied in a set of
good practices, methodologies, and tools,
which serves two purposes:

// Aligning objectives between Dev and
Ops

// Automating the entire production
cycle

A L I G N I N G O B J E C T I V E S B E T W E E N D E V A N D
O P S

The term DevOps was born out of a
contraction of the terms «Development»
and «Operations» (the teams involved
in infrastructure engineering and the
operation of IS production). Historically,
the teams involved in the construction
and operation of the IS were one, but the
complexity of the architectures and the
significant growth of ISs have led to a clear
separation between those who develop
the IS (Devs) and those who ensure its
operation and proper functioning (Ops).

D E V O P S W A S H

T h e re i s , a s ye t , n o s i n g l e ,
c o n ve n t i o n a l v i e w o n w h a t t h e

t e r m D e v O p s m e a n s . S o m e , s u c h a s
F o r re s t e r, d e f i n e i t a s t h e c re a t i o n
o f a n a u t o m a t e d s o f t w a re d e l i ve r y
p i p e l i n e ; o t h e r s , s u c h a s G a r t n e r,

s t re s s t h e a d o p t i o n o f L e a n a n d
a g i l e p r a c t i c e s t o r a p i d l y d e l i ve r
I T s e r v i c e s . T h i s l a c k o f p re c i s e
d e f i n i t i o n , a n d t h e b r a n d i n g o f

m a n y t o o l s u n d e r t h e D e v O p s
b a n n e r, c l e a r l y s u g g e s t t h a t we

a re e x p e r i e n c i n g a p e r i o d o f
« D e v O p s w a s h , » f o l l ow i n g o n f ro m

p re v i o u s w a ve s o f « g re e n w a s h » a n d
« c l o u d w a s h ” s e e n i n re c e n t ye a r s .

T h e re ’s a n e e d , t h e n , t o re m a i n
c a u t i o u s a n d n o t b e c a u g h t o u t b y

t h e l a b e l i n g g a m e .

10

T h e w a l l o f c o n f u s i o n

I N N OVAT I O N & F U N C T I O N A L I T Y STA B I L I T Y & R AT I O N A L I Z AT I O N

D E V E LO P M E N T T E A M O P E R AT I O N T E A M

APPLICATION
DEPLOYMENT

A d a p t t h e I S t o m a r ke t d e m a n d s by
d e ve l o p i n g n e w f e a t u re s

=

M AX I M I Z E C H A N G E S

M a i n t a i n av a i l a b i l i t y by c o n t ro l l i n g
c h a n g e s t o re d u c e t h e r i s k o f b re a kd ow n

=

M I N I M I Z E C H A N G E S

P R O D U C T C U LT U R E S E R V I C E C U LT U R E

O b j e c t i ve s : O b j e c t i ve s :

10 11

To d a y, c o l l a b o r a t i o n b e t w e e n
Development and Operations teams
is often painful. Their respective aims,
which cannot be a priori reconciled -
innovation, development and reactivity
for Dev, and the stability and reliability of
the IS for Ops - and their strong mutual
dependencies, explain the complexity of
their relationship. This state of affairs can
lead to a lack of performance, and also
mutual «annoyance.»

Because there is too little involvement of
Operations teams, Agile methodologies, as
they are applied in most large companies,
have not been able to address this
problem. On the contrary, the acceleration
of the application delivery frequency
and use of a test and learn philosophy
have sometimes widened the gap even
more. Operations teams must deploy
an increasing number of new features
in production, often with an increase in
error rates. At the same time, reliability
requirements remain just as demanding.

This not only results in the creation of
bottlenecks in the transition to production,
but also to ever-greater «friction» between
the Development and Operations teams.

DevOps practices and tools enable the
inclusion of all players in the IT value chain
into a single, integrated, and continuous
process based on Agile principles
(iterations, strong business collaboration,
test and learn, etc.) and the development
of a genuine culture of collaboration
between Dev and Ops.

A U T O M A T I N G T H E E N T I R E P R O D U C T I O N
C YC L E

DevOps also relies on the implementation
of automation tools throughout the
entire IT production cycle: automation of
infrastructure provisioning, application
bui lding, test ing, and appl icat ion
deployment.

The primary aim of such automation is
to absorb the increase in the volume and
frequency of tests resulting from iterative
operation. It is, therefore, critical to
guaranteeing the quality of the application
code at each iteration without creating a
bottleneck downstream of application
construction.

12

EXAMPLE OF KPIs

SOME EXAMPLES OF INDICATORS:

Number of appl i cat ion de l iver ies

T ime to putt ing into product ion

Number of inc idents

Resolut ion T ime (MTTR)

Number of ro l lbacks

AND THE EXPECTED GAINS* :

200x more de l iver ies

2 555x faster

3x fewer inc idents

24x more rapid reso lut ion

0 ro l lback

* Puppet and DORA, 2016 State of DevOps Report

Because it reduces human errors and
facilitates measurability at each stage,
automation in the DevOps process is
also a lever to continuously improve, and
render reliable, the entire manufacturing
and deployment cycle.

Here, high-performance automation of
the entire cycle is the main lever to avoid
the bottleneck between development
and going into production. This is the key
to getting Operations teams out of their
firefighting role (continuous management
of problems) which they tend to be
pushed into, following the widespread
adoption of Agile practices.

DevOps emphasizes the automation of
the entire manufacturing and deployment
cycle. As a result, with the appropriate
tooling, everything becomes measurable
over the entire cycle. Measurement is the
key to enabling stakeholder buy-in to the
process, and to continuous improvement.
That is how «DevOpswashing” can be
defeated, but also a way of having the
right indicators to demonstrate the gains
over the whole cycle.

12 13

L E D E V O P S I S N O T :

• 	 A F I N I S H E D P R O D U C T o r a g e n e r i c a p p ro a c h . T h e re i s n o g e n e r a l t h e o r y
t h a t c a n b e a p p l i e d t o a l l b u s i n e s s e s ; w h a t ’s re q u i re d i s t o t a i l o r D e v O p s
g o o d p r a c t i c e s t o t h e s p e c i f i c b u s i n e s s c o n t e x t .

• 	 A F U S I O N o f t h e re m i t s o f D e v a n d O p s . M o re ove r, D e v O p s d o e s n o t
n e c e s s a r i l y t r i g g e r a c h a n g e i n o r g a n i z a t i o n a l d e s i g n , n o r d o e s i t
re q u i re t h e t wo t e a m s t o b e g ro u p e d w i t h i n t h e s a m e s t r u c t u re .

• 	 A “ Q U I C K A N D D I R T Y ” a p p ro a c h i g n o r i n g t h e p ro c e s s e s o r i n d u c i n g a l o s s
o f c o n t ro l . I n g e n e r a l , p ro d u c t i o n re m a i n s i n t h e d o m a i n o f O p s .

14

To u n d e r s t a n d w h a t D ev O p s i s , we n e e d t o u n d e r s t a n d w h a t i t i s b a s e d o n :

// A spot of automation

// And a lot of collaboration!

FOUR PILLARS TO BUILD DEVOPS

14 15

CULTURE OF COLLABORATIONCULTURE OF COLLABORATION

APPLICATION

INFRASTRUCTURE AS CODE

CONTINUOUS DEL IVERY

MANIFEST

Env a : Desc Inf ra a
Env b : Desc Inf ra b

F ILE 1 BUILD

FILE 2

DEPLOY ENVY

TESTAPI

W H I L E CO L L A B O R AT I O N H A S T O B E A L L- E N CO M PA S S I N G , A U T O M AT I O N C A N B E D I V I D E D
I N TO T H R E E CO M P O N E N T S :

THE APPLICATION i tse l f should be
modular and integrate informat ion

about the inf rast ructure to be
deployed, as wel l as the operat ional
e lements and automated tests to be

performed.

COLLABORATION, which i s the l ink between a l l these p i l lars ,
focus ing on the a l ignment between Dev and Ops .

INFRASTRUCTURE AS CODE, which must de l iver automated
and standardized- inter face runt ime envi ronments for the

appl i cat ion, as a funct ion of the needs expressed with in i t s
source code.

CONTINUOUS DEL IVERY, which has
to of fer a p ipe l ine that a l lows the

test ing of the appl i cat ion in an
automated way, and i ts deploy-

ment on the r ight envi ronment at
the r ight t ime.

16 17

So, to deliver a DevOps transformation
successfully, it is essential to pursue
four parallel threads—the four pillars of
DevOps:

// Applications: Prepare for the
transformation of applications by
making them modular and possible
to automate

// Continuous Delivery: automate the
delivery chain from the development
to going into production

// Infrastructure as Code: lean toward
a consumable service infrastructure,
and also, one that can be integrated
with application delivery

// Collaboration: change the culture
and practices to move toward an
organization without silos, and driven
by Agile methodologies

The application once built
(compiled) must be deployed in
an environment (such as test,
integration, production, etc.).

The infrastructure uses the
application’s configuration file
(Manifest) to create an environment
tailored to the application.

Once the required environment is
created, the application is deployed
on it.

The Continuous Delivery pipeline
uses the Infrastructure API to
request construction of the
environment.

The infrastructure then orchestrates
the effective creation of the
environment.

The application can then be tested
according to the tests present in the
application code

1

2

3

4

5

6

CULTURE OF
COLLABORATION

CONTINUOUS
DEL IVERY

APPLICATION

INFRASTRUCTURE

AS CODE

MANIFEST
Env a : Desc Inf ra a
Env b : Desc Inf ra b

F ILE 1 BUILD

FILE 2

DEPLOY ENVY

TEST

API

1

6

3 2

5

4

16 17

PILLAR I
MODULAR, LOOSELY-COUPLED

APPL ICAT IONS

18

A N A R C H I T E C T U R E T H AT I S N E C E S S A R I LY
M O R E M O D U L A R

Being more Agile involves delivering new
application versions, usually by sharing
the work over several teams (often small,
and multidisciplinary, “feature teams”).
This requires the decoupling of their
work to achieve greater efficiency, and,
therefore, the use of more modular
application architectures.

While service-oriented architectures have
been held back by centralized and rigid
governance structures, the focus here is
on decentralized approaches that give
developers autonomy in their publication

and consumption activities.

An application built in this way is an
assembly of modules (up to several
dozen), which are all independent code
elements, each under the responsibility
of a «feature team”: a small, autonomous
team that carries out the think, build, and
run activities for the module.

The exchanges between modules are
standardized, and rely on interfaces
(APIs) , which a l low them to be
decoupled. These APIs will be able to use
management solutions (API management)
to allow developers to work autonomously
on their creation, publication, and
consumption. This will, however, require
service-mapping solutions to avoid a loss
of control over the IS.

MONOLITHIC ARCHITECTURE MODULAR ARCHITECTURE

With monolithic architecture, each delivery requires the
entire monolith to be put into production.

With modular architecture, several teams can work on
different modules at the same time.

Te a m A Te a m ATe a m B Te a m BTe a m C Te a m C

HS HS

   X X

18 19

Beyond these broad threads, this
approach is also an important facilitator in
developing an Agile approach because it
helps improve the quality of code, facilitate
teamwork, speed up the execution of tests,
and so on.

In a modular approach, the components
of the application must, therefore, be very
loosely linked—at all levels:

// In terms of frameworks and libraries,
which can be used as tools, but
must not define the structure of the
application layer.

// Between application modules
and all things external, in order to
simplify the carrying out of tests.
The application and its modules must
be unitary testable without requiring
a user interface, database, or other
applications. This places a great
importance on the unit tests within
the code of each module of the
application, as well as on the creation
of plugs to allow unitary testing of
a service.

// In terms of the user interface. This
must be replaceable without any
impact on the application layer and
its functions.

// In terms of data persistence. To be
scalable, this type of architecture
requires stateless services. The
persistence of data and sessions must
be managed in a way that ensures an
increase or reduction in load, while
ensuring the consistency of the data.

// In terms of any other function that
is external to the application and
comes from other applications or
services.

T H E C A S E O F M I C R O - S E R V I C E S

M i c ro - s e r v i c e a rc h i t e c t u re , a
p a r a d i g m t h a t h a s b e e n d e ve l o p e d
f ro m t h e p r a c t i c e s o f B 2 C p l a ye r s

w i t h ve r y b ro a d u s e r b a s e s , o f f e r s ,
i n p a r t i c u l a r, a re s p o n s e t o t h e
n e e d f o r s p e c i f i c f u n c t i o n s i n a

s y s t e m t o b e h i g h l y s c a l a b l e . W h e n
f o l l ow i n g a r a t i o n a l e o f d i s m a n t l i n g
f u n c t i o n a l b o u n d a r i e s a n d re p l a c i n g

t h e m w i t h a u t o n o m o u s f i n e l y -
m e s h e d s e r v i c e s , w h i c h n e ve r t h e l e s s
c o n t i n u e t o i n t e r a c t w i t h e a c h o t h e r,

a r c h i t e c t u re , i n f r a s t r u c t u re , a n d
o p e r a t i o n a l p r a c t i c e s m u s t e vo l ve
c o n s i d e r a b l y i n o r d e r t o m a n a g e a

p a n o p l y o f m i c ro - s e r v i c e s w h i c h m a y
b e i n s t a n t i a t e d i n a n a d - h o c f a s h i o n .

20

R A P I D A N D W E L L- M A N A G E D R E L E A S E

Designing applications in DevOps
mode requires more robust tests to
be performed (in particular through
automating them) and taking more risks
in the production stages. This needs
development methods to evolve, and
the introduction of new approaches such
as Test Driven Development, Feature
Flipping, or Blue-Green Deployment, in

order to put certain functionalities into
production in a partial or targeted way.

In the same way, this requires the
application to be conceived so that it is
directly operable, without waiting until it is
put into production to address its placing
under supervision or backup, the design
of new automation scripts, performance
problems, scalability or other operational
issues.

20 21

TEST-DRIVEN DEVELOPMENT

1 2 3TEST FIRST

Repeat the sequence for any new features

DEVELOP REFACTOR

Write the test for the
funct ional i ty to be developed

Wri te the min imum
funct ional code to pass

the test

Rewri te and
opt imize the code

Check whether the test has
been fa i led

Check whether the test has
been passed

Check whether the test has
been passed

UNIT TEST ING: THE TEST-DRIVEN-DEVELOPMENT APPROACH

WHEN A DEVELOPER CODES A FUNCTION, THEY GENERALLY DO THE FOLLOWING THREE
THINGS:

Wr i te the funct ion’s source code;

Wri te the uni t- test source code for the funct ion;

Run the uni t test for the funct ion in order to ver i fy that i t passes .

WITH A TEST-DRIVEN DEVELOPMENT APPROACH, DEVELOPERS DO THE OPPOSITE . HERE
THEY:

Wr i te the source code for the uni t test for the funct ion to be developed;

Wri te the funct ion’s source code which a l lows the test to be passed;

Rework the code to improve i t , whi le making sure that the test cont inues to
be passed.

This method ensures that each funct ion is assoc iated with one or more unit tests ,
and i t thus fac i l i tates the non-regress ion tests whi le, at the same t ime, detai l ing
the spec i f i cat ions, because the test descr ibes the expected behavior.

1

1

2

2

3

3

22

E X A M P L E S O F D E P LOY M E N T M E T H O D S

Deployment of an n+1 vers ion on an envi ronment para l le l to the product ion
vers ion, n , and fac i l i tated f l ip-f lop f rom n to n+1 , and f rom n+1 to n (ro l lback) .

Deployment of severa l vers ions in para l le l , some vers ions (or funct ional i t ies) are only
open to certa in populat ions (a lpha then beta testers) before be ing ro l led out (or not) .

BLUE/GREEN
DEPLOYMENT

CANARY
 RELEASE

C L I E N T S

I N T E R N A L U S E R S

Ve r s i o n 2

Ve r s i o n 3

We b S e r ve r A p p S e r ve r D B S e r ve r

Ve r s i o n n

Ve r s i o n n + 1

Ve r s i o n 1

S m a l l g ro u p o f u s e r s

M a i n u s e r s

22 23

Deployment of features that can be act ivated v ia an appl i cat ion inter face. Th is enables
cer ta in funct ional i t ies not to be act ivated i f the tests do not take p lace, wi thout s lowing
down re lease. Can be combined with the Canary Re lease.

Deployment of two var iants of the same vers ion in para l le l in order to compare the
resu l ts and determine which one to reta in .

FEATURE
 FL IPPING

A/B TEST ING

N E W F E AT U R E F E AT U R E F L AG O R
TO O G L E S

CO N S U M E R S

O N

O F F

O F F

C L I E N T S

Ve r s i o n 1 A

Ve r s i o n 1 B

5 0 %
6 7 %

c o n ve r s i o n

1 1 %
c o n ve r s i o n5 0 %

24

Functional tests (or recipes) should be
mostly automated too, in order to check
that there are no functional regressions
during each iteration, and verify that
newly created, or modified, functions are
behaving correctly.

This is not trivial and involves being able
to test function calls and human-machine
interactions, in order to retrieve and
analyze the elements (data or graphics)
returned, and to maintain and develop all
the data sets required to perform the tests.

Enabling this automation for an existing
application could mean a significant
workload, even higher than that for unit-
test implementation, and could lead to an
increase in delays and workloads to be

managed.

T E C H N I C A L D E B T I S N O T A P R O B L E M ,
P R O V I D E D I T I S M A N A G E D

More rapid construction of an application
necessarily involves compromises. As a
result, technical debt (in terms of code,
infrastructure, management tools, etc.) is
quickly and easily incurred, with a need
to «pay it off» throughout the life of the
project.

In a DevOps approach, it is important
to monitor this technical debt using a
KPI, and, as and when required - when
the agreed l imits are approached
- to invest the t ime to pay it off.
Conversely, there is no benefit in trying
to get to a position of zero debt; aside
from the risk of over engineering, doing
this puts a real brake on Agility.

However, studies show that a DevOps
approach reduces the time spent on
unplanned work (bugs), or code recovery,
by up to 22%.

T H E A N O N Y M I Z AT I O N
O F D ATA

I n c e r t a i n s e c t o r s (i n p a r t i c u l a r ,
b a n k i n g a n d i n s u r a n c e) t h e n e e d
f o r d a t a t o re m a i n a n o n y m o u s i s

b e c o m i n g i n c re a s i n g l y i m p o r t a n t .
I n c o n t e x t s l i ke t h i s , t h e

i m p l e m e n t a t i o n o f D e v O p s s h o u l d
e n s u re t h a t t h e a u t o m a t i o n p u t i n

p l a c e i s c a p a b l e o f a n o n y m i z i n g t h e
l i ve d a t a u s e d i n f u n c t i o n a l t e s t i n g .

C u r re n t l y, t h i s i n vo l ve s a
c o n s i d e r a b l e e f f o r t b e c a u s e , a s ye t ,

t h e re a re n o t o o l s o n t h e m a r ke t t h a t
a re s u f f i c i e n t l y m a t u re .

* Puppet & DORA 2016 State of DevOps Report

To t a l d e b t

Tox i c l eve l o f d e b t
(h i s t o r i c a l)

A t t a i n a b l e i n p ra t i c e
I d e a l p o s i t i o n

H e a l t h l eve l o f d e b t
(re c e n t)

T i m e

24 25

PILLAR I I
CONTINUOUS DEL IVERY FOR AUTOMAGIC DEL IVERIES

C o n t i n u o u s D e l i ve r y (C D) i s a n a u t o m a t e d s o f t w a re c o n s t r u c t i o n c h a i n . I t i s a

s e t o f p ro c e s s e s , t o o l s , a n d t e c h n i q u e s t o m a n a g e a p p l i c a t i o n d e l i ve r i e s , f ro m

t h e p ro d u c t i o n o f co d e, t h ro u g h b u i l d , d e p l oy m e n t , te s t i n g , a n d p a c k a g i n g , to

t h e d e l i ve r y o f f u n c t i o n a l i t y. . . T h e a i m? To i n c re a s e t h e f re q u e n c y a n d s p e e d

o f d e l i ve r i e s i n a re l i a b l e w ay— b o t h ra p i d l y a n d c o n t i n u o u s l y.

DEVELOPMENT OF A NEW
ITERATION

BUILD

1

2

1
3

DEPLOY

TEST

26

Cont inuous De l ivery i s norma l ly
considered to be based on two automation
chains:

// The Continuous Integration (CI)
chain, targeted at development and
integrating the processes of build,
measurement of technical debt
(code quality), unit tests, and user
acceptance;

// The Cont inuous Deployment
chain, which extends the CI chain
by automat ing the prov is ion
of infrastructure environments
and application deliveries. This
extension is supported by Ops using
methodologies and tools that are
almost identical to those of Dev. Ops
thus manages the consumption of
infrastructure elements, configuration
management, and appl icat ion
deployment.

Therefore, the entire chain is automated
until going into production. Before
release, Ops must verify that a number of
prerequisites have been met, such as the
conformity of the application with the rest
of the IS, that there are sufficient resources
available within the relevant teams to
respond to incidents, the availability of
infrastructure, the timeliness of deploying
a new version, etc.

Once this is confirmed, all Ops then
has to do is to trigger the deployment
of the application (i.e. “push-button”
deployment).

Conversely, deployment on other
environments (such as non-production,
or pre-production) can be completely
automated.

Once a certain level of maturity has been
achieved, it is entirely possible to envisage
automatic, end-to-end deployment (c.f.
diagram opposite).

C H O O S E T O O L S A C C O R D I N G T O T H E
C I R C U M S TA N C E S , N OT T H E L A B E L

Today, the tools for the Continuous
Delivery chain are quite heterogeneous:
given the burgeoning market for DevOps
tools, each function has its tool, which can
be chosen from a myriad of solutions.

The first reason for this is that there is
no clear, common definition of DevOps,
which allows many vendors to apply
the DevOps label to any tool related
to software design, a software factory,
configuration management, or any other
form of orchestration («DevOpswash»).

26 27

CODE

Source Code
Management

Cont inuous Integrat ion

Cont inuous Del ivery

Cont inuous Deployment

BUILD

Automated
bui lds

TEST

Automated
tests

Automated
Deployment

DEPLOY

A c o m m i t s t a t e m e n t
t r i g g e r s t h e b u i l d

A s u c c e s s f u l b u i l d
t r i g g e r s t h e t e s t s

I f t h e t e s t s a re
p a s s e d , t h e b u i l d i s

v a l i d a t e d

At t h i s p o i n t ,
t h e c o d e c a n b e
d e p l oy e d a t a n y

t i m e

28

Moreover, considerable effort is going into extending the scope of many tools beyond
their traditional technico-functional domains, which makes the actual contribution of
the various tools more complicated to discern, while still not producing true, end-to-end
software suites.

To f i n d a w a y t h r o u g h t h i s c o m p l e x i t y, w e r e c o m m e n d c l a s s i f y i n g t o o l s a s s h o w n i n
t h e f o l l o w i n g m a t r i x :

BUILD TEST

CODE QUALITY

SOURCE CODE MANAGER CONTINUOUS INTEGRATION SERVER

C O N T I N U O U S I N T E G R A T I O N

• g i t • B i t b u c ke t • G i t h u b
• C o d e C o m m i t • C V S

• S u bve r s i o n • M e rc u r i a l •
H e l i x •

• M ave n • G ra d l e • G r u n t •
A p a c h A N T • N P M •

• S o n a r Q u b e • K i u w a n •
S e m m l e •

• J U n i t • S e l e n i u m
• S a u c e L a b s • Te s t

C o m p l e t e •

• AW S C o d e P i p e l i n e • X L
R e l e a s e • TC • B a m b o o

• Tr av i s C I •

28 29

The present lack of consensus on the implementation of DevOps currently prevents
the software industry from offering dedicated solutions. However, these solutions will
emerge in the coming years, which will require adherence to their particular modes of
operation (and, therefore, the associated practices).

DEPLOYMENT

COLLABORATION

CONFIGURATION MANAGEMENT

C o n t i n u o u s I n t e g r a t i o n C o n t i n u o u s D e p l oy m e n t C o l l a b o r a t i o n

C o n t a i n e r & o rc h e s t ra t i o n

• Tre l l o • S l a c k • J i r a• H i p C h a t •

• I B M A c t i ve D e p l oy • X L
D e p l oy • G o o g l e C l o u d
D e p l oy m e n t M a n a g e r •

D o c ke r • Ku b e r n e t e s • M e s o s •

• Va g r a n t • P u p p e t s L a b s •
C h e f • A n s i b l e • S a l t s t a c k •

Te r r a f o r m • C F E n g i n e •

30

The type of tools to choose will depend on a company’s specific circumstances: if it
is an early adopter, it will prefer a best-of-breed model or a solution, based on a public
cloud with its associated tooling; if it is more of a “follower”, it will be able to choose
an integrated suite from a supplier in the market or an outsourced, turnkey solution.

Lastly, some tools naturally have to
be centralized while others can be
instantiated on a team-by-team basis,
with each one maintaining control of
the frequency of updates for the tool
in question, or managing some specific
aspects of configuration.

Generally, tools that are centralized and
common to all are:

// Source/artifact management tools
(libraries, configuration files, etc.);

// Test coverage management tools;

// Tools for publishing analyses of
results.

While the tools that lend themselves to
being instantiated by individual teams
may be:

// Applications builders;

// Tools for unit testing, code cove-
rage, and compliance with coding
standards;

// Deployment tools (configura-
tion management and application
deployment).

OUTSOURCER

PUBLIC CLOUD

FULL EDITOR
SUITE

BEST OF BREED

I N - H O U S E S K I L L S

AD
OP

TI
ON

E X P E R T I S E

EA
RL

Y
AD

OP
TE

RS

30 31

PILLAR I I I
THE INFRASTRUCTURE AS CODE , AN INFRASTRUCTURE

DRIVEN BY THE APPL ICAT ION CODE

I n f ra s t r u c t u re a s C o d e (I a C) i s t h e u l t i m a t e s t a g e o f A g i l i t y a n d i n f ra s t r u c t u re

c o m m o d i t i z a t i o n .

E X P E R T I S E

32

For several years now, the market has been
making considerable progress in moving
toward the automation and consumption
of infrastructure: we now commonly
talk about “as a service”, «on demand“,
“catalogs of services”, “the Cloud,” “API,”
and so on. Infrastructure as Code takes
this concept further still.

The purpose of IaC is to enable the
automatic creation, and configuration, of
a complete execution environment (both
infrastructure elements and middleware),
through the application code. Developers
manipulate the infrastructure in the
application code itself, in the same way
as functionality.

IaC therefore allows the infrastructure
to be defined in a new way: it becomes
simply a form of computing power,
s c a l a b l e w i t h o u t d i f f i c u l t y, a n d
manipulable by the Devs through normal
application code languages.

B EG I N M A K I N G I N F R A ST R U C T U R E AG I L E— BY
A U TO M AT I N G I T

Of course, infrastructure automation
remains a prerequisite for IaC: in order
to manipulate infrastructure through
application code, it must be exposed
through programmatic interfaces (APIs).

This automation can be done in three
steps, which correspond to three levels of
maturity.

I m p l e m e n t i n g a s t a t e - o f - t h e - a r t I A C i s n o t a p r e r e q u i s i t e f o r D e v O p s : yo u
c a n b e g i n w i t h a n i n i t i a l s e t o f p ro j e c t s b y a u t o m a t i n g o n l y p a r t o f t h e

i n f r a s t r u c t u re a n d m ov i n g t ow a r d e n d - t o - e n d I n f r a s t r u c t u re a s C o d e t h ro u g h
s u c c e s s i ve i t e r a t i o n s .

32 33

The first step - providing the
envelope of the Virtual Machine - is
often the simplest. From a DevOps
perspective, however, final barriers
to complete automation (often the
configuration of the network) must
be removed, and the environment
provisionable in a single click.

The second step - deploying
middleware - becomes immediately
more complex. One way to simplify
it is to create Virtual-Machine models
with pre-installed middleware;
but this method soon reaches its
limits (as a result of difficulties in
managing the life cycle of the model,
adding new middleware, etc.). It
is therefore preferable to be able
to directly provision the required
machines and middleware in an
automated fashion, perhaps even
using defined application topologies
(the deployment of a set of elements
according to a previously defined
scheme).

The third step is often the most
complex, as it requires interaction
w i t h o t h e r e l e m e n t s o f t h e
infrastructure (f i rewal ls , load
balancers, exchange gateways, etc.)
in order to provide the application
w i t h a co m p l e te exe c u t i o n
environment.

These three steps can be carried out
sequentially, or at the same time,
depending on the extent to which the
infrastructure has been automated.

There is also a need to move toward
automation of infrastructure services:
backup, technical and application
supervision, scheduling, and security.
The aim here is to ensure that resilience,
security, and operational services are
directly managed in the application by
the developers themselves; it is, therefore,
important that developers can subscribe
directly to these services through an API.

PA A S - A N A CC E L E R AT O R

P a a S (P l a t f o r m a s a S e r v i c e) t o o l s
c a n b e p owe r f u l a c c e l e r a t o r s , i f yo u

a re a b l e t o m e e t t h e c h a l l e n g e o f
i n t e g r a t i n g t h e m w i t h t h e I S , a n d , i n

p a r t i c u l a r , t h e e x p l o i t a t i o n c h a i n .

We a re w a r y o f p r i v a t e P a a S s o l u t i o n s
(d e ve l o p e d i n - h o u s e o r s o l u t i o n s
f ro m s o f t w a re e d i t o r s , d e p l oye d

o n - p re m i s e s) w h i c h a re o f t e n n o t
ve r y m a t u re , a n d w h i c h s i m p l y d o
n o t i n c l u d e s o l u t i o n s t o t h e i s s u e s

a s s o c i a t e d w i t h i n f r a s t r u c t u re
s e r v i c e s (b a c k u p , s u p e r v i s i o n ,

n e t wo r k , a n d s e c u r i t y) .

1

2

3

34

S I M P L I F Y T H E I N F R A S T R U C T U R E T O G I V E
D E V E LO P E R S A U TO N O M Y

Mere automation of this process is not
sufficient to qualify it as Infrastructure
as Code; the deployment must be
accessible via an API and be able to
define, in the application’s source code,
the infrastructure required to make the
application function:

// The number of servers and asso-
ciated middleware;

// Application services to be deployed
(memory cache, message queue,
etc.);

This must make it possible to simplify the
infrastructure in order to offer developers
straightforward computing power only.

U S E T H E P U B L I C C L O U D W H E N A P R O J E C T
S TA R T S W I T H A B L A N K S H E E T O F PA P E R

Tools are, above all, a matter of context.
There are numerous tools: from ones
designed for a particular function
only, to the complete suites offered by
large publishers, and Pure Player cloud
solutions; solutions exist for all contexts.

Thus, an organization with strong, internal
technical skills will use a different strategy
to a company that typically relies on
external resources. Similarly, a company
willing to take risks to differentiate itself
(an «early adopter») will not use the
same approach as a company that values
stability and seeks mature solutions to
safeguard the proper functioning of its
business activities.

YOUR OUTSOURCER’S PLATFORM

SOLUTION CLOUD PUBLIC

FULL EDITOR SUITE

BEST OF BREED SOLUTION
compr is ing var ious sof tware

I N - H O U S E S K I L L S

AD
OP

TI
ON

E X P E R T I S E

EA
RL

Y
AD

OP
TE

RS

M i c ro s o f t • A z u r • H e ro k u • A c q u i a •
E n g i n e Ya r d • S A P • O R AC L E C l o u d •

G o o g l e C l o u d p l a t f o r m • I B M •
A m a z o n we b s e r v i c e s •

I B M • A t o s • L i n k by n e t • Syg m a • H C L
• C a p g e m i n i • G F I • CG I • Ta t a • W i p ro

• C l o u d Te m p l e • A c c e n t u re • O r a n g e
B u s i n e s s S e r v i c e • S o p r a • S t e r i a • C S C •

C l a r a n e t • H P E n t e r p r i s e •

B M C • W M Wa re • I B M• H P• C A
• A t l a s s i a n •

C h e f • C F E n g i n e • A n s i b l e • P u p p e t s
L a b s • S a l t s t a c k •

34 35

Whatever the circumstances, a Public
Cloud approach is something to consider
because the players associated with
this type of Cloud are currently ahead
of the market. Amazon, Microsoft, and
Google have achieved a level of maturity
that cannot be bettered by companies’
internal teams, because this area is not
a core activity for them. Therefore, if
you are using a Private Cloud strategy, it
makes sense to know why, and for which
workloads, this strategy is the best choice.

Lastly, when designing an IaC, it is
essential to standardize the infrastructure
and, therefore, make choices:

// Choose where to invest the effort
to automate and mass produce the
components that make sense.

// Accept that workloads which do
not fit with this standard will not be
included. This also means that any
new application must be designed
to follow these standards.

E X P E R T I S E

36

T h e D e v O p s c u l t u re d r a w s o n A g i l e a n d L e a n m e t h o d s (e m p owe r m e n t , t r u s t ,

r e s p e c t , a n d t r a n s p a r e n t c o m m u n i c a t i o n) a s w e l l a s a b u s i n e s s - c e n t r i c

a p p ro a c h : a c a t a l y s t f o r g re a t e r c o o p e r a t i o n b e t we e n t h e b u s i n e s s f u n c t i o n s ,

D eve l o p m e n t a n d P ro d u c t i o n .

PILLAR IV
BREAKING DOWN S ILOS , AND DEVELOPING AGILE

AND COLLABORATIVE WORK PROCESSES

36 37

This cultural change will not happen
overnight, and it is best to spread it over
two broad stages:

Achieving this requires a common,
mutually-agreed language, and shared
indicators and tools:

// Share a vision for «products» rather
than «projects»: the teams can deli-
ver products that will be used by end
customers rather than simply being
contributions to a lambda project.

// Develop the indicators so that deve-
lopers are not assessed only on the
quality of their code, or the frequency
of their releases, but also on having
a good understanding of the require-
ments of production (and vice versa
for Ops).

// Leverage collaborative tools (such as
Trello or Jira Agile) to facilitate and
strengthen the link between Dev and
Ops

“ I T I S A L L A B O U T P E O P L E » # H U M A N F I R S T

A DevOps transformation is, above
all, about people—human beings—and
collaboration.

Therefore, the first obstacles to be
removed will be those related to issues
of collaboration: people who need to be
convinced that things can be done better
by doing them differently, unhelpful
processes to be dismantled, objectives
(including supplier objectives) to be
reviewed, tools to be changed, etc. All
these things can be achieved only by
drawing on reliable, motivated, and highly-
competent people with a solid capacity
to adapt (Google talks about «Highly
Skilled Engineers» in its «Site Reliability

Engineering» (SRE) methodology).

Moreover, as in any change management

project, there will be a requirement to

 ON A PROJECT

 ENTERPRISE-WIDE

1

2

// A s s e m b l e a te a m t h at i n c l u d e s p e o p l e
with a l l necessary ski l l s (Devs and Ops ,
b u t a l s o m e m b e r s f ro m A rc h i t e c t u re ,
Secur i ty, Compl iance, etc .)

// Re fo c u s t h e O p s f u n c t i o n o n b u i l d i n g
new, automated services

// Make Dev accountable for ensur ing the
operabi l i ty i ts products

// B r o a d e n t h i s w a y o f w o r k i n g t o m o s t
projects

// Propagate the DevOps cul ture widely by
shar ing issues and success stor ies

// Plan the organizat ional st ructure of the
ISD and how the target operating models
wi l l evolve

38

communicate the successes and failures
on the objectives, and the impacts on the

organization and its business functions.

O R G A N I Z A T I O N S A R E A L S O D R A W I N G
I N S P I R AT I O N F R O M T H E I N T E R N E T G I A N T S
I N T H E I R Q U E S T F O R A G I L I T Y

Others are now emulating the practices

pioneered by Google (SRE), Spotify,
Amazon, and Facebook. These practices
are moving things further along the
road toward full Agility. They have led
to the emergence of somewhat complex
pr inciples and methods a imed at

developing company-wide Agility.

// S p o t i f y i s p u rs u i n g a m e t h o d o l o g y w h o s e m a i n p i l l a r i s t h e a u to n o my
g i ve n to i t s te a m s (k n ow n a s fe a t u re te a m s) . I n o rd e r to m a i n t a i n t h e
i n t e g r i t y o f i t s I S , S p o t i f y h a s s e t u p c o m m u n i t i e s (k n o w n a s c h a p -
t e r s , t r i b e s , a n d g u i l d s) w h i c h b r i n g t o g e t h e r t h o s e w i t h s p e c i a l i s t
knowledge of a part i cu lar topic to form a type of matr ix-based h ierarchy.

// Recognized as be ing a s tate-of- the-ar t s t ructure for Ag i le organizat ions ,
i t neverthe less invo lves a methodology that i s not wel l documented, and
o n e t h a t re q u i re s a h i g h l eve l o f m a t u r i ty i n te r m s o f Ag i l i ty a n d te a m
management .

// SAFe is a framework developed in 2011 by a team of mult idiscipl inary experts
on Agi le organizat ions. I t was designed for tradit ional organizat ions (rather
than internet Pure P layers) to address complex programs involv ing nume-
rous teams.

// I t i s a i m e d a t co m p a n i e s w h o h ave a l re a d y m a s te re d t h e A g i l e S c r u m
method.

// The Sc rum of Sc rums i s a techn ique that enab les severa l Sc rum teams to
work together in a very st ra ightforward way, wi thout the need for a com-
pl icated f ramework .

// While this technique does not help in developing Agi l i ty at enterpr ise level ,
i t can be a step toward developing i t at large-pro ject sca le.

SPOTIFY

SAFe
Sca le Agi le Framework

SCRUM OF SCRUMS

38 39

TRADIT IONAL
ORGANIZATION

AGILE
ORGANIZATION

O R G A N I Z AT I O N A L A N D F U N C T I O N A L
S I LO S

N U M E R O U S I N D I V I D UA L K P I S

C E N T R A L I Z AT I O N O F M A N AG E M E N T
D E C I S I O N S

CO N F I D E N C E A N D D E L E G AT I O N

M U LT I D I S C I P L I N A RY T E A M S
A N D U N I T S

M O R E CO L L E C T I V E K P I S

PA R T-T I M E I N VO LV E M E N T I N
P R OJ E C T S

CO M P L E X , M U LT I L E V E L H I E R A R C H Y F E W E R H I E R A R C H I C A L L E V E L S

R I S K AV E R S I O N A N D CO N T R O L
C U LT U R E

 M A N AG E M E N T P R O C E S S F O R M A J O R
P R OJ E C T S

CO N T I N U O U S C H A N G E A N D D E L I V E RY

B I G B A N G V- C YC L E A N D C H A N G E
M A N AG E M E N T

D E V E LO P M E N T O F M I N I M U M
VA L UA B L E P R O D U C T S A N D R A P I D

C L I E N T F E E D B AC K

F U L L-T I M E I N VO LV E M E N T I N A T E A M
A N D O N TA S K S

F L E X I B L E P R O C E S S E S A DA PT E D TO
T H E N E E D S O F T H E B U S I N E S S

ST R U C T U R E

P R O C E S S

P E O P L E

40

I a C , C o n t i n u o u s D e l i ve r y (C D) , C u l t u re . . . W h e re s h o u l d yo u s t a r t ? H ow c a n yo u

i n i t i a t e a D ev O p s a p p ro a c h?

MOBILIZE YOUR CHAMPIONS
TO BEGIN THE TRANSIT ION TO DEVOP

40 41

The transition from traditional methods
to DevOps represents a real break in the
organization of work. Its deployment is a
progressive and delicate undertaking that
requires a degree of human and technical
investment not to be underestimated.

The early stages of the transformation are
key to assembling the relevant players,
setting out the rationale for future
investments, and creating a dynamic of
sustainable transformation. The path taken
can, and must, make it possible to realize
returns on investment from the very first
stages of transformation.

A project-by-project route makes it
possible to stage the effort over the long-
term, and to quickly obtain gains that are
both visible and measurable.

A DevOps deployment strategy can be
broken down into three areas:

// The choice of initial scope

// The deployment of a platform1

// Skills development

C H O O S E A S H O W C A S E P R O J E C T F O R
T H E T R A N S F O R M A T I O N , W H I C H I S B O T H
A M B I T I O U S A N D S A F E -TO - FA I L

Projects must be chosen to gain
commitment from the business functions
from the start, something that can then be
maintained for each subsequent project.

To achieve this, it is essential to select
a scope such that it focuses on the key
needs of the business functions, and
for which the returns from a DevOps
approach will be tangible, significant, and
simple to implement.

In DevOps, an iterative approach, coupled
with strong team involvement - from the
business functions to production - makes
it possible to quickly adapt to change by
removing operational constraints. DevOps
therefore fully guarantees a response
adapted to the specific need, even if things
are clarified - or change - as the project
progresses. In any case, it is these projects
or products, whose needs frequently
change, that will allow a company to

“The path taken can, and
must, make it possible to
realize returns on investment
from the very first stages of
transformation.”

1- Platform means: the deployment of collaborative tools, Continuous Delivery platforms, and automation (Infrastructure as
Code).

42

demonstrate that DevOps is a better
and faster approach than conventional
methods, including those that typically
require the close involvement of Ops.

However, the chosen scope must be secure
(«safe-to-fail»). As the chance of failure is
non-negligible, it is important to have an
alternative plan in place that allows the
acceptance of such risks.

V-CYCLE

AGILE OR AGILE
V-CYCLE

AGILE

AGILE

I N STA B I L I T Y O F N E E D

CO
MP

LE
XI

TY

U n s t a b l e

co
m

pl
ex

A L L P R OJ EC T S C A N B E N E F I T F R O M AG I L E M E T H O D S , B U T T H E P R I Z E I S A P P LY I N G I T TO P R OJ EC T S
W I T H R A P I D LY C H A N G I N G N E E D S

Projects where the need is unstable (i.e. the end result is not predictable) are natural
candidates for the Agile and DevOps methodologies because they benefit directly from
their iterative approaches.

Simple and stable projects can be safely handled by conventional methods. In time, these
too could also be addressed effectively by Agile methodologies.

Lastly, complex projects with stable needs can use either approach, provided the needs can
be properly understood. If not, Agile methodologies are preferable.

42 43

S T A R T W I T H E A S I L Y A U T O M A T E D
A P P L I C AT I O N S

The choice of initial projects must also
consider the applications involved.

The amount of effort required to integrate
an application into the continuous delivery
chain is rarely negligible. On the Dev side,
there is a need to transform the usual
integration processes, and sometimes
to change elements of the tools. On the
Ops side, all delivery process automation
scripts must be reviewed, in order that
they can be managed using the same tools
as those employed by Dev (versioning,
build, testing, etc.). Avoiding breakdowns
in the delivery chain is at the heart of
DevOps principles.

To minimize initial investments, it is
important to select applications for
which the integration effort, in terms of
maintaining a continuous delivery chain,
is minimal.

Typically, software packages that require
a quasi-manual intervention for a license
key to be acquired, or the use of a
graphical interface for installation, should
be set aside in the early stages of the
transformation.

Similarly, some applications, by nature,
lend themselves very badly to the
automation of tests.

Among the applications identified as
suitable, it makes sense to target those
whose delivery process has already
been identified as a barrier in terms of
time-to-market and quality of service

issues, as well as those with relatively
short development cycles. The greater
the obstacle associated with such
applications, the more obvious the
benefits of a redesign. This can also serve
as a rationale for making the investments
required to automate application delivery.

P R I O R I T I Z E T H E CO N ST R U C T I O N O F T H E I AC
A N D C D P L AT FO R M A S A F U N C T I O N O F YO U R
PA I N P O I N T S

Deployment of the platform will require
significant investment over the long-term,
though, paradoxically, this will not be very
visible within the business. However, it is
this platform that will sustain the success
of the approach.

Worse still, if it is badly or half-heartedly
implemented, the result can be to make
Ops’s pain points worse and endanger
the success of the projects selected. This,
in turn, risks the business abandoning
the DevOps approach and returning to
traditional methods.

The first projects will be those to build
the initial platform for Infrastructure as
Code and Continuous Delivery. The scope
of this platform will be extended over time,
project by project.

Each DevOps project should be seen as
an opportunity to draw on the budget
to develop the building blocks that
constitute the platform - and each
improvement to the platform as a way to
reduce the effort required in subsequent
projects. Prioritization is the key to
maintaining this virtuous circle.

U n s t a b l e

44

A good practice is to set an automation
goal for each project which will be
processed within a sprint, in the same
way as application functionality. In some
cases, if the project is sufficiently long and
complex, it may be possible to see a return
on investment even before it ends.

As for the automation of application
deliveries, a particularly effective practice
is to make use of projects to transform the
building blocks already identified as pain
points by the teams.

The deployment of collaborative tools,
whether for project management or
application code, must be treated as a
priority. These tools are key to improving
interactions between teams and aligning
them toward common goals.

Lastly, some organizations, faced with
the complexity of managing a very open
and heterogeneous IS (multiplying, for
example, the number of IaC platforms)
will need to pursue automation until an
orchestration layer can be put in place
for their different IaCs (both internal
and external, if they rely on external
infrastructures) and an orchestration
platform for delivery chains.

A Meta-Orchestrator or Business Process
Management (BPM) may also be required
to manage deployment processes on a set
of applications, by ensuring consistency
across the business. The deployment of
a Meta-Orchestrator is the highest level
of automation of deliveries - it automates
the releases, taking into account all
dependenc ies between d i f fe rent
applications.

T H E P U B L I C C LO U D
A N ACC E L E R ATO R F O R D E VO P S T R A N S F O R M AT I O N

C re a t i n g a n e w p l a t f o r m f ro m a n e x i s t i n g o n e c a n b e l o n g a n d c o s t l y.

T h e P u b l i c C l o u d c a n t h e re f o re b e a p owe r f u l , a n d l ow - c o s t , a c c e l e r a t o r t o l a u n c h a
D e v O p s e x p e r i m e n t u s i n g a s u i t e t h a t i s a l re a d y i n t e g r a t e d .

A l l m a j o r P u b l i c C l o u d s (M i c ro s o f t A z u re , A m a z o n We b S e r v i c e s , a n d t h e G o o g l e
A p p E n g i n e) o f f e r t h e i r ow n s u i t e s . T h e s e a re c o m p o s e d o f I a C s a n d t o o l s t o b u i l d

a C o n t i n u o u s - D e l i ve r y d a t a b a s e , i n c l u d i n g a n u m b e r o f f re e t o o l s (i n p a r t i c u l a r f o r
t e s t i n g a n d c o d e q u a l i t y) .

We s t ro n g l y re c o m m e n d u s i n g t h e s e i n i t i a l l y i n o r d e r t o b e n e f i t m o re q u i c k l y f ro m
c o n c re t e re s u l t s a n d e n a b l e a m o re a m b i t i o u s t r a n s f o r m a t i o n t h a t d o e s n o t p re j u d g e

w h a t e x i s t s a l re a d y o r t h e p ro c e s s e s a l re a d y i n s t a l l e d .

44 45

S TA R T W I T H T H R E E « F E AT U R E T E A M S » O F
C H A M P I O N S T O B U I L D T H E P L AT F O R M A N D
F I R S T A P P L I C AT I O N I N D E V O P S M O D E

In order to ensure the success of the
first project and effective propagation
of the associated practices, three teams
must be brought together - with their
members selected from those who can be
considered champions in their respective
fields:

In parallel with the first project, the IaC
and CD feature teams will put in place
the first elements of the platform needed
to launch the projects in DevOps mode.
The scale of these will be determined as
a function of the speed at which these
first elements are to be put in place and,
naturally, the means that will be used to
do this.

At the beginning, these teams should
be based in the same place, or at least
linked using effective collaborative tools.
Similarly, they should undergo common
training in order to forge strong links from
the beginning.

A N I AC F E AT U R E T E A M , i n c h a r g e o f b u i l d i n g t h e
I n f r a s t r u c t u re a s C o d e p l a t f o r m (o rc h e s t r a t i o n ,
A P I , a n d d e p l oy m e n t t e m p l a t e s) .

A C D F E AT U R E T E A M , i n c h a r g e
o f b u i l d i n g t h e C o n t i n u o u s
D e l i ve r y p i p e l i n e (t h e
C o n t i n u o u s D e l i ve r y s e r ve r, t h e
p u t t i n g i n p l a c e o f SV N t o o l s ,
t e s t i n g , e t c .)

A N A P P L I C AT I O N F E AT U R E T E A M
(o r p ro d u c t t e a m) , w h i c h i n c l u d e s
a n O p s t e a m m e m b e r, t o b u i l d
a w a re n e s s w i t h i n D e v a b o u t t h e
i s s u e s t h a t O p s f a c e s .

I N F R A S T R U C T U R E
A S CO D E

CO N T I N U O U S D E L I V E R Y

A P P L I C AT I O N

46

T H E O R G A N I Z AT I O N W I L L B E AG A I N ST YO U :
YO U N E E D TO P R O V E T H E M W R O N G !

Transformation toward an Agile model
will necessarily experience resistance to
change. It is vital that the success of the
first project is communicated widely.

It is also essential to set up, right from the
initial project, quantified indicators that
will help make the success of DevOps a
reality.

The tools used in the process allow
detailed analysis of the code quality,
d e p l oy m e n t t i m e s , n u m b e r s o f
application deliveries, numbers of bugs,
etc. These aspects also serve as points
of measurement, making it possible to
demonstrate the attractiveness of the
approach and the return on investment
it brings.

It is a question of highlighting these gains
and promoting them, in order to provide
the rationale for the investments already
made - and those required in the future.

T H E M I S TA K E S T O A V O I D

T h e f i r s t s i g n i f i c a n t t r a n s f o r m a t i o n s t o
h a ve b e e n a c h i e ve d i n t h i s a re a h a ve

a l re a d y re ve a l e d s o m e o f t h e p i t f a l l s t o
a vo i d :

• 	 T H E SY S T E M W I L L B E AG A I N S T YO U : yo u
m u s t t h e re f o re s t re s s t h e a s s o c i a t e d R O I .

• 	 T H E N E E D TO D E M O N S T R AT E T H AT YO U A R E
R I G H T: t o d o t h i s , yo u m u s t m e a s u re t h e
b e n e f i t s o f t h e t r a n s f o r m a t i o n .

• 	 YO U W I L L E X P E R I E N C E FA I L U R E s : i t i s
e s s e n t i a l t o a c c e p t f a i l u re s a n d e r ro r s
b y t a k i n g a n i t e r a t i ve , « t e s t a n d l e a r n »
a p p ro a c h .

• 	 “ O N E S I Z E D O E S N OT F I T A L L : » e a c h
D e v O p s a p p ro a c h m u s t b e a d a p t e d t o
t h e c i r c u m s t a n c e s a n d c h a l l e n g e s o f t h e
c o m p a n y w h e re i t i s b e i n g i m p l e m e n t e d .

• 	 R E S P E C T F O R T H E M O N O L I T H : i t i s e s s e n t i a l
t o i n t e g r a t e t h e n e w a p p ro a c h w i t h
h i s t o r i c / l e g a c y s y s t e m s , a n d t o re s p e c t
e x i s t i n g p ro c e s s e s , a s a p p ro p r i a t e . D o n ’ t
t r y t o re b u i l d e ve r y t h i n g f ro m s c r a t c h .

K E Y S U CC E S S FA C T O R S

S i m i l a r l y, t h e r e a r e s e v e r a l k e y s u c c e s s f a c t o r s t h a t c a n b e h i g h l i g h t e d :

• 	 S I M P L I F Y : p ro c e s s e s , i n f r a s t r u c t u re , e t c . Eve r y t h i n g m u s t b e s t a n d a r d i z e d .

• 	 A U TO M AT E : yo u r i n f r a s t r u c t u re , p ro c e s s e s , a n d a l l re p e t i t i ve , l ow a d d e d - v a l u e a c t i o n s .

• 	 R E C R U I T H I G H - Q U A L I T Y E N G I N E E R S A N D D E V E LO P E R S : t u r n i n g t h e m i n t o p ro p e r l y q u a l i f i e d O p s
w i t h re s p o n s i b i l i t y f o r t h e d e s i g n o f n e w s e r v i c e s a n d I S b u i l d i n g b l o c k s .

46 47

TOWARD A NEW OPERATIONAL MODEL
FOR THE ISD

O n c e t h e f i r s t p ro j e c t s h ave d e m o n s t ra t e d t h e va l u e o f t h e a p p ro a c h , i t w i l l b e

a q u e s t i o n o f e x t e n d i n g g o o d p r a c t i c e s t h ro u g h o u t t h e b u s i n e s s .

T h e m e m b e r s o f t h e f i r s t t e a m s m u s t s e r v e a s c o a c h e s a n d a m b a s s a d o r s t o

d i s s e m i n a t e g o o d p r a c t i c e t o t h e p r o d u c t t e a m s t h a t w i l l p r o g r e s s i v e l y b e

f o r m e d w i t h i n t h e I S D .

T h e t e a m s t h a t c o n t r i b u t e d t o t h e c o n s t r u c t i o n o f t h e I a C a n d C D p l a t f o r m

m u s t b e t h e f i r s t b u i l d i n g b l o c k s o f t h e c o m p e t e n c e c e n t e r s t h a t w i l l d e ve l o p

t h e p l a t f o r m , a c c o rd i n g t o t h e n e e d s o f t h e P ro d u c t t e a m s , a n d a c t a s s u p p o r t

t o O p s .

48

T H E P R O D U C T T E A M S W I L L D E V E LO P TO C R E AT E M U LT I P L E T E A M S , ACCO R D I N G TO
F U N C T I O N A L I T Y, W I T H I N T H E D E PA R T M E N TA L I S D S

Wo r k i n g a s c l o s e l y a s p o s s i b l e w i t h t h e b u s i n e s s f u n c t i o n s t o a d a p t t o t h e i r n e e d s

I n t e g r a t i n g D e v s a n d O p s , a n d u s i n g I a C a n d C D , t o d e l i ve r n e w f u n c t i o n a l i t y m o re r a p i d l y
a n d f re q u e n t l y

T H E C R E AT I O N O F A N I N T E G R AT I O N A N D S E R V I C E S M A N AG E M E N T L AY E R

D r a w i n g o n I a C a n d C D c o m p e t e n c e c e n t e r s m a d e u p o f t h e t e a m s i n vo l ve d i n t h e f i r s t
D e v O p s p ro j e c t s

W h i c h a l s o h a s re s p o n s i b i l i t y f o r ove r a l l c o n s i s t e n c y (a rc h i t e c t u re , s e c u r i t y, t o o l s , e t c .)

S i m p l e , m o d u l a r, I N F R A S T R U C T U R E S E R V I C E S L I N E S a n d a u t o m a t e d o p e r a t i o n s , « s e c u re d
b y d e s i g n »

D e ve l o p i n g I N N OVAT I O N A N D R & D C A PA B I L I T I E S t o s t a y a h e a d o f e ve n t s a n d m a i n t a i n
c l o s e l i n k s t o t h e b u s i n e s s f u n c t i o n s

B U T A L S O , s u s t a i n a b l e i n t e g r a t i o n w i t h t r a d i t i o n a l o p e r a t i o n a l m o d e l s

To ensure a degree of «cross-fertilization» (the dissemination of knowledge between
the teams), it is important to foster the construction of communities that share good
practices between Dev and Ops, but also Architects and others.

These communities should also allow a common reference framework on Agile
methodologies (project, management, community coordination, etc.) to be developed.

Lastly, this transformation must respect the legacy system and the work of those who will
continue to maintain it. Minimizing the risks of this stage is, therefore, not only a question
of managing the technical elements (such as interoperability, scalability, maintenance,
etc.) but also the people aspects (for example, the attractiveness of positions, skills
management, etc.). Later, it will also be necessary to develop it, either by refreshing it

48 49

Archi tecture
Infrast ructure

as Code
Cont inuous

Del ivery
COMMAND CENTER

SKILLS NETWORK FEATURE TEAM FETAURE TEAMFEATURE TEAM

LAB

JOB

Projects (S I & Process) HUMAN
RESOURCES

PROJECT
PORTFOLIO

ECONOMIC
 MANAGEMENT

CONFORMITY

SUPPLIER
MANAGEMENT

SERVICES
 CATALOGUE

METHOD AND
QUALITY

UX

Development and maintenanceOPS

Rec ipe

Project management & so lut ion des ignFRONT-END

Archi tectureARCHITECTURE

S upport

C R O S S - F U N C T I O N A L

LA
B

 Id

éa
tio

n,
 s

ke
tc

h
,p

ro
to

ty
tin

g I n t e g r a t i o n a n d s e r v i c e s m a n a g e m e n t

L i g n e s d e s e r v i c e s

“ L E G AC Y ” P R OJ E C T S

I N F R A ST R U C T U R E

M OA M O E

ARCHITECTURE

OPERATIONS

DEVELOPMENT

HARDWARE LAYERS

IaaS PaaS Workplace

HÉBERGEMENT ET TÉLÉCOMS

LegacySécur i té Ops tools

Feature
Teams

Feature
Teams

Feature
Teams

Feature
Teams

Feature
Teams

Build/
Dev

Build/
Dev

Product
owner

Product
owner

Scrum
Master

Scrum
Master

Appli/
TMA

Appli/
TMA

Archi Archi

Ops Ops

(with new technologies), or by transforming it completely (rewriting it piece-by-piece
using an Agile philosophy).

50

S U P P O R T I N G Y O U R D E V S & O P S I N T H E I R
M O D I F I E D D I S C I P L I N E S

The new organizational design necessarily
affects the disciplines of operations and
development. It is not a matter of turning
Ops into Devs, or vice versa, but of helping
the two disciplines evolve toward new
practices.

Ops will evolve towards the preparation
of reusable and automated infrastructure
elements. This will take place at the same
time as the Devs are upskilling to ensure
the development of the deployment
scripts for each application, something
that will be done using the same tools
as the Devs.

Development skills, and the knowledge of
the configuration management tools, are
particularly important here. Ops already
has a culture of scripting. The challenge
for them will be to move from old-style
practices - scripts that are not reusable,
rarely reviewed, and difficult to maintain
- to using uniform practices and tools
throughout the IT value chain.

Conversely, increasing the automation and
quality of the deployments will lead to a
reduction in the number of incidents and
change requests that Ops have had to
manage until this point.

For their part, Devs can no longer simply
produce the application code. They
will take account of the deployment
constraints of environments, design
application deployment models, and
allow application materials to be varied
- such that they can be deployed in

any environment without additional
management costs. From now on, they will
be part of a complete continuous-delivery
chain, integrating build processes (in
contrast to their previous ways of working)
and the measurement of technical debt
(code quality), as well as automated unit
and user acceptance tests.

This moves them toward:

// a better understanding of produc-
tion and application-deployment
models in order to «variabilize
the application,» enabling it to be
deployed differently depending on
the environment in question;

// following an approach known as
«test-driven development,» to
ensure a high level of quality, and
non-regression to be controlled.

//

50 51

CONCLUSION

While it is now imperative for companies
to be more Agile and deploy applications
more quickly, the DevOps practices that
need to be put in place to do this will,
nevertheless, have profound impacts on
ISDs:

// Transformation of the way an appli-
cation is designed by making it more
modular, and integrating infrastruc-
ture and operations into its code;

// The automation and «softwariza-
tion» of infrastructure, and the pro-
vision of infrastructure services, via
programmable interfaces contained
directly in the code;

// The evolution of the Ops discipline
toward development and vice versa
(and therefore the need to recruit
differently, train people, and manage
change).

// Different ways of working with the
business functions, through feature
teams that involve all stakeholders
and also modify the ISD’s organi-
zational structure and operational
model.

You need to start now, progressively
adopting these practices, using a test and
learn approach, and drawing inspiration
from the practices of the internet Pure
Players. This requires a change of mindset:
with a need to focus on results; think
“product” rather than “project,” and take
smaller, but more frequent, steps. This is
a profound change which will not happen
in the space of a few months, but it will
yield rapid results.

And with “NoOps” still a distant target,
there is all the more need to move quickly.
This concept means that the developers
themselves are responsible for running
applications, while Operations focuses on
automation (and end-to-end supervision).
This may seem like a utopian vision,
but it is already a reality for giants like
Amazon, who have derived real benefits
by refocusing people on the added value
they can offer.

www.wavestone.com

