
A P I s a re e ve r yw h e re t o d ay. T h e y a l l ow e xc h a n g e s o f i n f o r m a t i o n b o t h
w i t h i n i n f o r m a t i o n sy s t e m s , a n d w i t h p a r t n e r s a n d c u s t o m e r s w h o n e e d
t o a c c e s s t h e m . B u t w h a t d o e s g o o d s e c u r i t y p r a c t i c e l o o k l i ke?

Today, what are commonly called APIs, or Application Programming Interfaces, group
together a raft of inter-application communication methods ranging from web services
(REST or SOAP) to local or remote calls between processes (RPCs). These types of web
services, while not the only ones to use APIs, have spread like wildfire in recent years, and
are now a widely used and essential communication mechanism for all companies that have
embraced digital transformation. These days, they can be found in an increasing number of
use cases: public, personal, and sensitive data – mobile applications, exchanges between
partners, the IoT, so-called “ client-side” applications, and so on.

But they are not a new concept. The introduction and definition of the concept of REST

architecture, in 2000, saw the emergence of the first APIs. The pioneers were eBay

(in particular) and Flickr; then Facebook and Twitter, made them the core to their products,

something on which third-party developers could build their own services. And, ever since

the emergence of the concept, the question of how to secure access to this new type of

web service has been in the air.

Experience tells us that securing APIs is a recipe based on four ingredients, all of which must

be carefully measured out.

BERTRAND CARLIER

bertrand.carlier@wavestone.com

AUTHOR

WHAT’S THE RIGHT RECIPE
TO SECURE YOUR APIS?

This publication has been produced

with the contributions of Samantha MARECAUX

and Parfait NANGMO.

2

Applications web & APIs – Security as usual

In a Wavestone benchmarking exercise
on web-application security1, of the 128

applications we audited, serious flaws
were observed in 60%. The situation

on the ground for APIs is very similar.

The answer is simple but often difficult to

implement – the usual recommendations
for web security – for example, those for

OWASP2, must be taken into account in

just the same way.

A number of security measures and good

development practices are available to

developers and operations teams when

it comes to covering the vulnerable areas

traditionally targeted by attackers:

Once these basics have been properly

mastered and applied, the question

of proper access management for the

application comes up. This is a matter of

determining the means of authentication

for accessing an API (to authenticate both

the user and the calling application), and

agreeing on a common protocol between

third parties.

OAuth2 is now the best suited, and
most widely, used standard for REST
APIs. It consists of an authorization
delegation standard that allows an

application to obtain authorization to
access a resource (API) on behalf of
a user.

OAuth2 is designed to cover a wide range

of use cases (web applications, mobile,

access [or not] via a browser, server-to-

server access, etc.); and, to this end, it

offers:

// Four main process steps to obtain a
token (RFC 6749)

// Three mechanisms for using this token
(RFC 6750)

// Full documentation detailing the
threat model and the right questions
to ask when implementing OAuth2
within an architecture

SESSION MANAGEMENT

Authentication and maintenance of sessions
Client side vs. server side
Non-guessable session identifier
Reauthenticate for criticalactions

SENSITIVE DATA

Separation of environments
Storage and management of secret information

Make use of proven security mechanisms

ACCESS CONTROL

Management of profiles and prvileges
Cases of competition
Separation of user spaces

EXCEPTION MANAGEMENT

Management of errors
Creation of logs

Capture all errors and address them

INPUT/OUTPUT MANAGEMENT

Encryption of data beyond responding

MEMORY MANAGEMENT

Memory allocation
Initialization of objects and variables

Monitoring of memory use

1 2

36

5 4

T h e r i s k
“ z o n e s ”

Client

Authorization
server

Resource
Server (API)

Access token

Resource
owner

T H E S E C U R I T Y A S U S U A L B A S E L I N E

A PINCH OF OAUTH

And lastly, a dedicated authentication

overlay, which rounds off these initial set

of steps: OpenID Connect3. This stan-

dard makes it possible to control the cha-

racteristics of user authentication more

precisely (the means of authentication,

Single Sign-On, transmission of identity

attributes in a standard format, forced

reauthentication, etc.)

By just looking at these four documents—,

which already represent the equivalent

of some 250 pages—we can understand

why OAuth2 has a poor reputation for

being a complex, heavy protocol that is

liable to implementation errors.

This reputation isn’t entirely undeserved:

some major web players, such as

Facebook and Twitter, have had their

fingers burned, and have seen their users’

personal data rendered accessible with

no prior authentication.

It’s important to understand that the

root of the problem isn’t the protocol

itself: fortunately, it’s quite possible to

implement OAuth2 in a secure way—

but the abundance of implementation

options, which, if poorly assessed and

1- https://www.wavestone.com/app/uploads/2016/10/Benchmark-Securite-Web-1.pdf
2- https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
3- https://openid.net/specs/openid-connect-core-1_0.html

D O N O T F O R G E T T H E B A S I C R E C O M M E N D A T I O N S O F W E B S E C U R I T Y…

3

THE RECIPE FOR SECURED APIs

selected, lead to critical flaws: the misuse

of an application’s identity, access to

the personal data of a third-party user,

theft of Facebook/Google cookies when

logging in using social media accounts, or

even the compromise of a user’s account.

The recommandations below can be used

to add an initial level of security to your

implementation:

// �Local storage of secret information:
The client application is provided with

identifiers enabling it to authenticate

itself with the OAuth server; so, don’t

put this secret information (the service

identifier) in the mobile application;

and, if you do, consider it compromised

// Redirected URIs: Validate redirected

URLs strictly with the application, wit-

hout the use of wildcards

// �Implicit: Avoid OAuth2 ”Implicit“

flows, whose security is debatable (for

example, tokens in the URLs can be

present in the browser history), as well

as the user experience it provides, for

example during token expiry

// �Authorization codes: Validate autho-

rization codes strictly: a code must be

checked only once—and only by the

client for whom it was intended.

// State and PKCE: Use these protocol

options to ensure the integrity of the

entire series of process steps

// Authorization ≠ Authentication: Use

OpenID Connect4 to authenticate, but

OAuth to delegate access

L IMIT THE ADDIT IVES

No sooner has this first pinch of OAuth

been swallowed – a necessary step along

the way – when questions begin to surface

about very frequent use cases.

T H E S I N G L E S I G N - O N M O B I L E . . .
O R , H O W T O A L LO W M O B I L E
E M P LO Y E E S O R C L I E N T S T O E A S I LY
A CC E S S M U LT I P L E A P P L I C AT I O N S
W I T H O U T R E - A U T H E N T I C AT I N G ?

It might be a field agent in a customer-

facing role, or making a series of

interventions at different sites, all while

using a good dozen applications every

day; or it might be a client who’s installed

several applications on the public app

store and needs to access them all,

without having to reauthenticate on

each...today, these are all very common

scenarios. Since 2008, the techniques

that make it possible have varied

depending on the possibilities offered

by the mobile OS (iOS’s KeyChain, URL

parameters, Mobile Device Management,

etc.). Nevertheless, Apple and Google

converged towards a common solution

in 2015: the use of a browser system as

an anchor point for an SSO session. This

is now officially good practice, formalized

in ”Best Current Practice4 - OAuth2 for

native applications.“

CONTEXTUAL AUTHENTICATION...
OR, HOW TO ADAPT THE ACCESS
LEVEL TO DATA ACCORDING TO ITS
CRITICALITY

One of the many issues concerning

authentication is to simplify, as much as

possible, user access to data, while still

guaranteeing satisfactory levels of security.

Contextual authentication provides an

answer to this issue, adapting the level of

access to the nature of the transaction: its

characteristics, user habits, context, and so on.

A mobile banking application, for example,

allows the user to access their bank account,

and see account balances, without having to

reauthenticate each time these are accessed.

However, the application will require

authentication when performing a sensitive

operation (transferring money between

their own accounts, for example), and

strong authentication when performing a

very sensitive operation (adding an external

recipient for a transfer, for example).

The market now offers solutions designed

according to a logic where the application

client is responsible for initiating the

token request by specifying the level of

authentication required. But the real need is

to define and apply these data access policies

in a single point within the authorization

server. This is essential when there’s a need

to apply an authentication proportionate to

the level of risk (geolocation, is it a known

terminal or not, transaction habits, etc.). And

it has to be said that the solutions available

on the market today do not yet offer the

required flexibility in this respect.

I D E N T I T Y P R O PA G AT I O N . . .
O R , H O W T O PA S S A N A CC E S S
T O K E N B E T W E E N T W O (O R M O R E)
A P P L I C AT I O N S .

It’s increasingly common that a call to an

API triggers a cascade of calls to other APIs,

in particular within a micro-service-type

architecture setting. The transmission of the

identity of the user must then be assured

while still maintaining security:

// Transmitting a single token right along

the chain is highly risky: the token

has far too many rights, and may be

misappropriated at any point in the

chain

// Checking the user’s identity only

at the beginning of the chain, and

then authenticating just the services

when transmitting it, is also risky: a

compromised service could misuse the

identity of any user

Besides, the rights (i.e. scopes) contained in the

initial token may not match the rights required

at every level of the chain of service calls.

4- https://tools.ietf.org/html/draft-ietf-oauth-native-apps

www.wavestone.com

2017 I © WAVESTONE

Wavestone is a consulting firm, created from the merger of Solucom and Kurt Salmon’s European Business (excluding retails

and consumer goods outside of France). The firm is counted amongst the lead players in European independent consulting.

Wavestone’s mission is to enlighten and guide their clients in their most critical decisions,

drawing on functional, sectoral and technological expertise.

The recipe for secured APIs

WRITE THE RECIPE

Use defined architecture and tailor it to the application context

LIMIT THE ADDITIVES

Ask yourself whether the ”typical measures“ are actually real needs

A PINCH OF OAUTH

Without falling into the potential traps its use can involve

ADOPT ”SECURITY AS USUAL“ AS THE BASELINE

After all… an API is a web application

What’s the last ingredient of the recipe?

The need to set out a reference architecture

for OAuth in order to adapt it to the context

of the company’s IS. To do this, the API

framework must be defined, by:

// Defining and sharing the security
rules: The authorized process steps

and the application framework, the

security checklists, and the reference

architecture, must all be formalized.

// Training and equipping developers:
You’ll need to organize training

sessions, and presentations on the

principles to adopt. Project teams

can be made autonomous in terms

of their integration with the rest of

the IS.

// Integrating security resources into
agile sprints: The resources that act

as a ”security coach“ must be iden-

tified in order to support the appli-

cation design, provide ready-to-use

solutions, and serve as an accelerator.

// In summary, rather like the recipe for

a good broth, securing APIs requires

a list of ingredients, ranging from the

most basic to the most sophisticated,

while keeping the needs and context

firmly in mind. And above all, such

work has to be a joint effort—towards

a common goal!

WRITE DOWN AND SHARE THE RECIPE

A major benefit of this new series of process

steps is that it makes it possible to centralize

the calls policy between micro-services, as

well as the application of this same policy,

thereby, ensuring the traceability of calls.

PROTECTING AGAINST TOKEN THEFT...
OR, HOW TO GUARD AGAINST THE
THEFT OF A TOKEN BASE?

Ever since the OAuth2 protocol was

designed, the token it uses has been

considered sufficient for access to a resource.

Token theft is therefore a permanent threat

which must be protected against.

Two approaches are possible:

// Try to prevent such theft (by playing

a game of ”cat and mouse“),

// Or, make this token necessary, but not

sufficient, to access an API.

This second approach, set out in the draft

”OAuth2 Token Binding6,“ requires the

application client to authenticate itself

using a cryptographic key pair when gene-

rating the token, and to use the same key

pair when using that token. The token and

key pair are linked, and a stolen token wit-

hout the client’s private key is, therefore,

unusable.

It is to address this use case, and the issue

of the traceability of identity misuse, that a

new grant type is currently being offered:

Token Exchange5

Each intermediate caller can exchange the

token received from the upstream service

(which contains the identity of the latter

and that of the user) against a token that

can be transmitted to a downstream service

(always supplying the identity of the user,

the identities of the services through which

the chain passes, and the rights required to

call the service).

5- https://tools.ietf.org/html/draft-ietf-oauth-token-exchange
6- https://tools.ietf.org/html/draft-ietf-oauth-token-binding

